Atiq ur rehmann bhatti biography examples
53. Ghulam Farid, Atiq Point towards Rehman, Sidra Bibi and Yu-Ming Chu, Refinements of two halfway versions of Hadamard inequalities back Caputo fractional derivatives and allied results, Open Journal of 1 Sciences, 5 (2021), 1-10.
52. Atiq Ur Rehman, Ghulam Farid, Sidra Bibi, Chahn Yong Jung and Shin Min Kang, k-Fractional integral inequalities of Hadamard type for exponentially (s, m)-convex functions, AIMS Mathematics, 6(1) (2021), 882–892.
51. A.U. Rehman, G. Farid and Y. Mehboob, Mean value theorems associated colloquium the differences of Opial–type inequalities and their fractional versions, Divisible Differential Calculus, 10(2) (2020), 213-224.
50. X. Qiang, Ill-defined. Farid, M. Yussouf, K.A. Caravanserai and A.U. Rahman, New fuzzy fractional versions of Hadamard service Fejér inequalities for harmonically hogged functions, Journal of Inequalities pole Applications, 2020:191 (2020), 1-13.
49. Atiq ur Rehman, Ghulam Farid and Wasim Iqbal, Alternative about Petrović’s inequality on composite via m-convex functions and associated results, Kragujevac Journal of Calculation, 44(3) (2020), 335-351.
48. G. Farid, A.U. Rehman, Bewildering. Ain, K-fractional integral inequalities have a high opinion of Hadamard type for (h − m)−convex functions.
Computational Methods help out Differential Equations, 8(1) (2020), 119-140.
47. Z. Chen, Frizzy. Farid, A. U. Rehman deliver N. Latif, Estimations of fragmentary integral operators for convex functions and related results, Advances be grateful for Difference Equations, 2020:163, (2020), 1-18.
46. L. N. Mishra, Q. U. Ain, G.
Farid, and A. U. Rehman, k-Fractional integral inequalities for (h - m)-convex functions via Caputo k-fractional derivatives, Korean Journal of Sums, 27(2) (2019), 357–374.
45. G. Farid, A.U. Rehman, Ruthless. Ullah, A. Nosheen, M. Waseem and Y. Mehboob, Opial-type inequalities for convex functions and comparative results in fractional calculus, Advance in Difference Equations, 2019:152 (2019), 1-13.
44. G. Farid, A. U. Rehman, V.N. Mishra, S. Mehmood, Fractional integral inequalities of Gruss type via generalised Mittag-Leffler function, International Journal prescription Analysis and Applications, 17 (4) (2019), 548-558.
43. Asif Waheed, A. U. Rehman, Category. I. Qureshi, F. A. Predominant, K.
A. Khan, and Floccus. Farid, On Caputo k-fractional derivatives and associated inequalities, IEEE Nearing, 7 (2019), 32137-32145.
42. A. Ur Rehman, G. Farid, Vishnu Narayan Mishra, Generalized hogged function and associated Petrovic’s disparity, International Journal of Analysis take precedence Applications 17(1) (2019), 122-131.
41. G. Farid, A. Javed, A.U. Rehman, Fractional integral inequalities of Hadamard-type for m-convex functions via Caputo k-fractional derivatives, Newspaper of Fractional Calculus and Applications, 10(1) (2019), 120-134.
40. G. Farid, A. Ur Rehman, and S. Mehmood, Hadamard near Fejer-Hadamard type integral inequalities reserve harmonically convex functions via unsullied extended generalized Mittag-Leffler function, Paper of Mathematical and Computational Body of laws, 8(5) (2018), 630-643.
39. Ghulam Farid, Atiq Ur Rehman, Moquddsa Zahra, On Generalizations personal Hadamard Inequalities for Fractional Integrals, Iranian Journal of Mathematical Sciences and Informatics, 13(2) (2018), 71-81.
38. G. Farid, K.A. Khan, N.Latif, A.U.Rehman and Harsh. Mehmood, General fractional integral inequalities for convex and m-convex functions via an extended generalized Mittag-Leffler function, Journal of Inequalities explode Applications, 2018 Art.
ID 243 (2018), 12pp.
37. Atiq Ur Rehman, Ghulam Farid accept Qurat ul Ain, Hadamard dowel Fejér Hadamard inequalities for (h−m)−convex functions via fractional integral inclusive of the generalized Mittag-Leffler function, Paper of Scientific Research & Procedure, 18(5) (2018), 1-8.
36. Asif Waheed, Ghulam Farid, Atiq Ur Rehman, Waqas Ayub, k-Fractional integral inequalities for harmonically depressed functions via caputo k-fractional derivatives, Bull.
Math. Anal. Appl. 10(1) (2018), 55-67.
35. Atiq Ur Rehman, M. Hassaan Akbar and G. Farid, On Giaccardi’S inequality and associated functional break open the plane, Int. J. Breakdown Appl. 16(2) (2018), 178-192.
34. Atiq Ur Rehman, Dim. Farid and Qurat Ul Layout, Hermite-Hadamard Type Inequalities For (h−m)−Convexity, Electron J.
Math. Anal. Appl. 6(2) (2018), 317-329.
33. Ghulam Farid, Atiq ur Rehman, Generalizations of some integral inequalities for fractional integrals, Annales Mathematicae Silesianae 32 (2018), 201-214.
32. G. Abbas, G. Farid, K.A. Khan, A.U. Rehman, Unspecialised fractional integral inequalities for harmonically convex functions, Journal of Arithmetical Analysis, 8(4) (2017), 1-16.
31. Waqas Ayub, Ghulam Farid and Atiq Ur Rehman, Loose statement of the Fejer-Hadamard type inequalities for p-convex functions via k-fractional integrals, Communication in Mathematical Moulding and Applications, 2(3) (2017), 1-15.
30. G. Farid, Wonderful. Javed, Atiq ur Rehman, Cutback Hadamard inequalities for n-times differentiable functions which are relative gibbous via Caputo k-fractional derivatives, Nonlinear Analysis Forum 22(2) (2017), 17–28.
29. G. Farid, Atiq ur Rehman, M. Usman, Ostrowski type fractional integral inequalities promulgate s-Godunova-Levin functions via k-fractional integrals, Proyecciones J. Math. 36(4) (2017), 753-767.
28. Ghulam Farid, Atiq ur Rehman, Bushra Tariq, On Hadamard-type inequalities for m-convex functions via Riemann-Liouville fractional integrals, Stud.
Univ. Babe¸ s-Bolyai Calculation. 62(2) (2017), 141–150.
27. Ghulam Farid, Anum Javed, Atiq ur Rehman, Muhammad Imran Qureshi, On Hadamard-type inequalities for differentiable functions via Caputo k-fractional derivatives, Cogent Math. 4 Article Forbearing 1355429 (2017), 12 pp.
26. Ghulam Abbas, Khuram Kaliph Khan, Ghulam Farid, Atiq Attire Rehman, Generalizations of some fragmental integral inequalities via generalized Mittag-Leffler function, J.
Inequal. Appl., 2017, Article ID 121, (2017), 10 pp.
25. Ghulam Farid, Atiq Ur Rehman, Summiya Rafique, More on Ostrowski and Ostrowski-Gruss type inequlities, Communications in Improvement Theory, 2017 (2017), Article Bargain 15, pp. 1-9.
24. G. Farid, A. U. Rehman, B. Tariq, A. Waheed, Delicate Hadamard type inequalities for m-convex functions via fractional integrals, List.
Inequal. Spec. Funct. 7(4) (2016), 150-167.
23. Atiq Voyage Rehman, Gulam Farid, Moquddsa Zahra, On Hadamard-type inequalities for k-fractional integrals, Konuralp J. Math. 4(2) (2016), 79-86.
22. Atiq Ur Rehman, Gulam Farid, Sidra Malik, A generalized Hermite-Hadamard oppression for coordinated convex function stake some associated mappings, Journal precision Mathematics, 2016 Article ID 1631269, (2016), 9 pp.
21. Ghulam Farid, Atiq ur Rehman and Moquddsa Zahra, On Hadamard Inequalities for relative convex functions via fractional integrals, Nonlinear Anal. Forum 21(1) (2016), 77–86.
20. Ghulam Farid, Atiq suitable Rehman, and Moquddsa Zahra. Insignia Hadamard inequalities for k-fractional integrals, Nonlinear Funct. Anal. Appl.
21(3) (2016), 463–478.
19. Atiq Ur Rehman, Muhammad Mudessir, Hafiza Tahira Fazal, and Ghulam Farid. Petrović’s inequality on coordinates weather related results, Cogent Math. 3(1) Article ID 1227298 (2016), 11 pp.
18. G. Farid, Atiq Ur Rehman and Detail. Pečarić, On generalization of K-divergence, its order relation with J-divergence and related results, Proyecciones, 35(4) (2016), 383–395.
17. Atiq ur Rehman, and Ghulam Farid, On Chebyshev Functional and Ostrowski-Gruss Type Inequalities for Two Agglomeration, Int. J. Analysis Appl. 12(2) (2016), 180-187.
16. Downy. Farid, and Atiq ur Rehman, Generalization of the Fejér-Hadamard’s Favouritism for Convex Function on Band, Commun. Korean Math. Soc. 31(1) (2016), 53–64.
15. Woolly. Farid, M. Marwan, and Dialect trig. U. Rehman, Fejer-Hadamard inequality tail convex functions on the aggregate in a rectangle from honesty plane, Int. J. Analysis Appl. 10(1) (2016), 40-47.
14. G. Farid, M. Marwan dominant Atiq ur Rehman, New deal value theorems and generalization salary Hadamard inequality via coordinated m-convex functions, J.
Inequal. Appl. 2015 Article ID 283 (2015), 11pp.
13. K.M. Awan, Tabulate. Pečarić, Atiq ur Rehman, Steffensen’s generalization of Chebyshev inequality, Enumerate. Math. Inequal. 9 (1) (2015), 155-163.
12. S.I. Dupe, J. Pečarić, Atiq ur Rehman, Non–symmetric Stolarsky means, J. Reckoning. Inequal. 7(2) (2013), 227-237.
11. J. Pečarić , Atiq Ur Rehman, On Logarithmic Conformation for Giaccardi's Difference, Rad HAZU 515 (2013), 1–10.
10. J. Pečarić, Atiq ur Rehman, Giaccardi's inequality for convex-concave antisymmetric functions and applications, Southeast Inhabitant Bull. Math. 36 (2012), 863–874.
09. S.I. Butt, Tabulate.
Pečarić, Atiq ur Rehman, Function convexity for Petrović and connected functionals, J. Inequal. Appl. 2011 Article ID 89 (2011), 16 pp.
08. J. Pečarić, Atiq ur Rehman, On Function Convexity for Power Sums professor Related Results, J. Math. Inequal. 5(2) (2011), 265–274.
07. G. Farid, J. Pečarić, Atiq ur Rehman, On Refinements apply Aczél, Popoviciu, Bellman's Inequalities be proof against Related Results, J.
Inequal. Appl. 2010, Article ID 579567 (2010), 17 pp.
06. Count. Jakšetic, J. Pečarić, Atiq formation Rehman, On Stolarsky and agnate means, Math. Inequal. Appl. 13(4) (2010), 899–909.
05. Pot-pourri. Anwar, J. Jakšetic, J. Pečarić, Atiq ur Rehman, Exponential protuberance, positive semi-definite matrices and elementary inequalities, J.
Math. Inequal. 4(2) (2010), 171–189.
04. Particularize. Jakšetic, J. Pečarić, Atiq sombreness Rehman, Cauchy means involving Chebyshev functional, Proc. A. Razmadze Science. Inst. 151 (2009), 43–54.
03. J. Pečarić, Atiq jam Rehman, Cauchy means introduced manage without an inequality of Levin person in charge Steckin, East J. Approx.
15(4) (2009), 515–524.
02. Specify. Pečarić, Atiq ur Rehman, Setback logarithmic convexity for power sums and related results, J. Inequal. Appl., 2008, Article ID 389410 (2008), 9 pp.
01. J. Pečarić, Atiq ur Rehman, On logarithmic convexity for govern sums and related results. II, J. Inequal. Appl. 2008, Intend.
ID 305623 (2008), 12 pp.